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Variance Swap (time T )
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Volatility Derivatives

Over last two decades, large demand of volatility derivatives:
variance swaps, volatility swaps, corridor integrated variance,. . .

Variance swaps: traded over-the-counter

I on various underlying assets (equity indices, exchange/interest
rates, commodities, etc.)

I at many different maturities (⇒ term structure)
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Why Variance Swaps?

Variance swaps have two distinctive features:

1. Easier to hedge than other volatility derivatives:
static position in options and dynamic trading of futures;
Dupire (1993), Neuberger (1994), Carr and Madan (1998),
a.o.

2. Direct exposure to variance risk over a fixed time horizon.
CBOE futures and options on VIX not equally direct exposure

I VIX index (30-day S&P 500 volatility index)
I introduced in 1993 (back-calculated to 1990, revised in 2003)
I 3/2004 futures on VIX
I 2/2006 European options on VIX
I 12/2012 “S&P 500 Variance Futures”
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Wall Street Journal, 22 October 2008
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Contribution

1. Novel and flexible model for term structure of variance swaps

2. Dynamic optimal investment in variance swaps, S&P 500,
index option, and risk-free bond
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Setup

I St index price (S&P 500), under Q:

dSt
St−

= rt dt + σt dBt +

∫
R
ξ (χ(dt, dξ)− νt(dξ)dt)

I Quadratic variation over horizon [t, t + τ ]:

QV(t, t+τ) =
1

τ

(∫ t+τ

t
σ2
s ds +

∫ t+τ

t

∫
R

(log(1 + ξ))2χ(ds, dξ)

)
I Variance Swap payoff:

QV(t, t + τ)−VS(t, t + τ)

I Variance Swap rate (depends on τ ⇒ term structure):

VS(t, t + τ) = EQ
t [QV(t, t + τ)]
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Variance Swap Data set
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Figure: Variance swap rates,
√
VS(t, t + τ)× 100, on the S&P 500

index from 4-Jan-1996 to 2-Sep-2010, daily quotes. Source: Bloomberg.
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Summary Statistics

Variance Swap rates
τ Mean Std Skew Kurt

2 22.14 8.18 1.53 7.08
3 22.32 7.81 1.32 6.05
6 22.87 7.40 1.10 4.97

12 23.44 6.88 0.80 3.77
24 23.93 6.48 0.57 2.92

Realized Variances
2 18.90 12.40 4.31 28.40
3 19.06 12.04 3.80 21.81
6 19.46 11.33 2.93 13.17

12 20.13 10.47 1.97 6.86
24 20.60 8.81 1.09 3.48

Table: Daily data from 4-Jan-1996 to 2-Sep-2010. Volatility percentage
units.
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Quadratic Variance Swap Model

I X is m-dimensional diffusion state process:

dXt = µ(Xt)dt + Σ(Xt)dWt

I X is quadratic if
µ(x) = b + βx

Σ(x)Σ(x)> = a +
m∑

k=1

αkxk +
m∑

k,l=1

Aklxkxl

I Define spot variance

vt = VS(t, t) = σ2
t +

∫
R

(log(1 + ξ))2νt(dξ)

I A quadratic variance swap model is obtained when

vt = φ+ ψ>Xt + X>t πXt
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Term Structure of Variance Swaps

Quadratic variance swap model admits a quadratic term structure:

VS(t,T ) = EQ
t [QV(t,T )] =

1

T − t
G (T − t,Xt)

with G (τ, x) = Φ(τ) + Ψ(τ)>x + x>Π(τ)x

and Φ, Ψ and Π satisfy a linear system of ODEs.
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Model Selection

Do we need the quadratic feature?

Data: Daily variance swap rates, and quadratic variation from
intraday futures returns

I In-sample (pre-crisis): Jan 4, 1996 to Apr 2, 2007

I Out-of-sample: Apr 3, 2007 to Jun 7, 2010

Method: Maximum Likelihood with Unscented Kalman filter

Estimation results:

I Good fit of the bivariate quadratic model (likelihood tests,
AIC and BIC criteria, pricing errors, forecasting power)

I Somewhat better than affine model with jumps

Quadratic Model 17/30



Fitting Variance Swap Rates
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Model−based VS rates
Actual VS rates
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Optimal Portfolio Problem

Maximize expected utility from terminal wealth VT of a power
utility investor with constant relative risk aversion (CRRA) η

max
nt ,wt ,φt ,0≤t≤T

EP

[
V 1−η
T

1− η

]

By dynamically and optimally investing:

I nt = (n1t , . . . , nnt)
> relative notional exposures to each

on-the-run τi -variance swap, i = 1, . . . , n

I wt fraction of wealth invested in stock index

I φt fraction of wealth invested in index option

I and risk-free bond

Optimal Investment 20/30



Investing in a Variance Swap

I Variance swap issued at t∗ with maturity T ∗ = t∗ + τ

I Spot value Γt at date t ∈ [t∗,T ∗] of a one dollar notional
long position in this variance swap:

Γt = EQ
t

[
e−r(T∗−t) 1

τ

(∫ T∗

t∗
vs ds − τVS(t∗,T ∗)

)]

=
e−r(T∗−t)

τ

(∫ t

t∗
vs ds + (T ∗ − t)VS(t,T ∗)− τVS(t∗,T ∗)

)

I Extends to τ -variance swaps issued at a sequence of inception
dates 0 = t∗0 < t∗1 < · · · , with t∗k+1 − t∗k ≤ τ . At any date
t ∈ [t∗k , t

∗
k+1) the investor takes a position in the respective

on-the-run τ -variance swap with maturity T ∗(t) = t∗k + τ .
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Investing in an Index Option

I Assume: index price jumps by a deterministic size ξ > −1

I One index option needed to complete the market, with price
Ot = O(St ,Xt). The Q-dynamics of Ot

dOt =r Ot dt +
(
∂sOt Stσ(Xt)R(Xt)

> +∇xO
>
t Σ(Xt)

)
dWt

+ ∆Ot (dNt − νQ(Xt) dt)

I Index put option in our empirical analysis
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Wealth Dynamics

I Resulting wealth process has Q-dynamics

dVt

Vt−
= n>t dΓt + wt

dSt
St−

+ φt
dOt

Ot−
+ (1− n>t Γt − wt − φt) r dt

= r dt + θW>t dWt + θNt ξ (dNt − νQ(Xt) dt)

I θWt and θNt are defined by

(
θWt
θNt

)
= Gt

nt

wt

φt

 with

Gt =

(
Σ(Xt)

> σ(Xt)R(Xt) 0d×1

01×m 0 1

) Dt 0m×1
∇xOt
Ot−

01×n 1 ∂sOtSt
Ot−

01×n 1 ∆Ot
ξOt−


and Dt is the m × n matrix whose ith column is given by(
e−r(T∗i (t)−t)/τi

)
∇xG (T ∗i (t)− t,Xt)
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Optimal Portfolio Problem

I Maximize expected utility from terminal wealth VT of a power
utility investor with constant relative risk aversion (CRRA) η

max
nt ,wt ,φt ,0≤t≤T

EP

[
V 1−η
T

1− η

]

I Pricing kernel:

dπt
πt−

= −r dt−Λ(Xt)
>dW P

t +

(
νQ(Xt)

νP(Xt)
− 1

)
(dNt−νP(Xt)dt)

I Assumption: The market is complete with respect to stock
index, index option, and n on-the-run τi -variance swaps.
Thus, n = m = d − 1, and the (d + 1)× (d + 1) matrix Gt is
invertible dt ⊗ dQ-a.s.
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Optimal Portfolio Problem: Solution via HJB

0 = max
θW , θN

{
∂J

∂t
+
∂J

∂v
v
(
r + θW>Λ(x)− θNξνQ(x)

)
+

1

2

∂2J

∂v 2
v 2θW>θW

+∇xJ
>(µ(x) + Σ(x)Λ(x)) +

1

2

m∑
i,j=1

∂2J

∂xi∂xj

(
Σ(x)Σ(x)>

)
ij

+θW>vΣ(x)>∇x

(
∂J

∂v

)
+
(
J(t, v(1 + θNξ), x)− J(t, v , x)

)
νP(x)

}

Optimal Allocation: There exists an optimal strategy n∗t , w∗t , φ∗t
recovered from:

θW ∗t =
1

η
Λ(Xt) + Σ(Xt)

>∇xh(T − t,Xt)

θN∗t =
1

ξ

((
νP(Xt)

νQ(Xt)

)1/η

− 1

)

where h is such that eh satisfies a known PDE
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Optimal Investment in VS: Short-Long Strategy
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I Short position in 2-year VS (earn variance risk premium),
long position in 3-month VS (hedge volatility risk)

I Periodic patterns in nt

I Based on bivariate quadratic model
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Optimal Investment in Stock Index and Put Option
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Wealth Trajectory with Optimal Investment
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Optimal portfolio
Proxy portfolio
S&P500

I Smooth wealth growth with little volatility

I Suited for risk-averse investors (CRRA η = 5)

I “Proxy” portfolio (infrequently rebalanced) performs similarly
to optimal portfolio (daily rebalanced)
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Wealth Trajectory with Optimal Investment: Log-investor
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Optimal portfolio
Proxy portfolio
S&P500

I Larger fluctuations than S&P 500, to seek risk premia

I Suited for less risk-averse investors (CRRA η = 1)

I “Proxy” portfolio (infrequently rebalanced) performs similarly
to optimal portfolio (daily rebalanced)
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Conclusion

I Introduce a quadratic term structure model for variance swaps

I Analytically tractable (closed form curves, and explicit
conditional moments)

I Optimal investment in variance swaps, stock index, index
option, and risk-free bond

I Optimal trading strategy in quasi closed-form:

I Main feature short-long strategy in variance swaps, i.e.,
“trading the spread of variance swaps”

I Stable wealth growth, or more exposure to risk factors (to earn
risk premiums), depending on the risk profile of investor
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