Quadratic Variance Swap Models

Loriano Mancini

Swiss Finance Institute and EPFL

joint with **Damir Filipović**, EPFL and **Elise Gourier**, Princeton University

Workshop on Stochastic and Quantitative Finance Imperial College London, 28–29 November 2014

Variance Swap (time 0)

Variance Swap (time T)

Outline

Motivation

Variance Swap

Quadratic Model

Optimal Investment

Outline

Motivation

Variance Swap

Quadratic Model

Optimal Investment

Motivation

Over last two decades, large demand of volatility derivatives: *variance swaps*, volatility swaps, corridor integrated variance,...

Variance swaps: traded over-the-counter

- on various underlying assets (equity indices, exchange/interest rates, commodities, etc.)
- ► at many different maturities (⇒ term structure)

Why Variance Swaps?

Variance swaps have two distinctive features:

- Easier to hedge than other volatility derivatives: static position in options and dynamic trading of futures; Dupire (1993), Neuberger (1994), Carr and Madan (1998), a.o.
- 2. **Direct** exposure to variance risk over a fixed time horizon. CBOE futures and options on VIX *not* equally direct exposure
 - VIX index (30-day S&P 500 volatility index)
 - introduced in 1993 (back-calculated to 1990, revised in 2003)
 - 3/2004 futures on VIX
 - 2/2006 European options on VIX
 - 12/2012 "S&P 500 Variance Futures"

Wall Street Journal, 22 October 2008

22 WEDNESDAY, OCTOBER 22, 2008 THE WALL STREET JOURNAL. FINANCIAL NEW Volatility kills market for Traders in the swaps can't hedge against se two amounts, is paid when the contract espire the swaps in the unforeseen extremes Ry Renis Ser vs volatility swaps word ket tr. tives, ular p This is course used in web to

Contribution

- 1. Novel and flexible model for term structure of variance swaps
- 2. Dynamic optimal investment in variance swaps, S&P 500, index option, and risk-free bond

Outline

Motivation

Variance Swap

Quadratic Model

Optimal Investment

Variance Swap

Setup

• S_t index price (S&P 500), under \mathbb{Q} :

$$\frac{dS_t}{S_{t-}} = r_t dt + \sigma_t dB_t + \int_{\mathbb{R}} \xi \left(\chi(dt, d\xi) - \nu_t(d\xi) dt \right)$$

• Quadratic variation over horizon $[t, t + \tau]$:

$$\operatorname{QV}(t,t+\tau) = \frac{1}{\tau} \left(\int_t^{t+\tau} \sigma_s^2 \, ds + \int_t^{t+\tau} \int_{\mathbb{R}} (\log(1+\xi))^2 \chi(ds,d\xi) \right)$$

Variance Swap payoff:

$$QV(t, t + \tau) - VS(t, t + \tau)$$

• Variance Swap rate (depends on $\tau \Rightarrow \text{term structure}$):

$$\mathrm{VS}(t,t+\tau) = \mathbb{E}^{\mathbb{Q}}_{t}[\mathrm{QV}(t,t+\tau)]$$

Variance Swap Data set

Year

Figure: Variance swap rates, $\sqrt{VS(t, t + \tau)} \times 100$, on the S&P 500 index from 4-Jan-1996 to 2-Sep-2010, daily quotes. Source: Bloomberg. Variance Swap

Summary Statistics

	Variance Swap rates			
au	Mean	Std	Skew	Kurt
2	22.14	8.18	1.53	7.08
3	22.32	7.81	1.32	6.05
6	22.87	7.40	1.10	4.97
12	23.44	6.88	0.80	3.77
24	23.93	6.48	0.57	2.92
Realized Variances				
2	18.90	12.40	4.31	28.40
3	19.06	12.04	3.80	21.81
6	19.46	11.33	2.93	13.17
12	20.13	10.47	1.97	6.86
24	20.60	8.81	1.09	3.48

Table: Daily data from 4-Jan-1996 to 2-Sep-2010. Volatility percentage units.

Outline

Motivation

Variance Swap

Quadratic Model

Optimal Investment

Quadratic Model

Quadratic Variance Swap Model

X is m-dimensional diffusion state process:

$$dX_t = \mu(X_t)dt + \Sigma(X_t)dW_t$$

X is quadratic if

$$\mu(x) = b + \beta x$$

$$\Sigma(x)\Sigma(x)^{\top} = a + \sum_{k=1}^{m} \alpha^{k} x_{k} + \sum_{k,l=1}^{m} A^{kl} x_{k} x_{l}$$

Define spot variance

$$v_t = VS(t, t) = \sigma_t^2 + \int_{\mathbb{R}} (\log(1+\xi))^2 \nu_t (d\xi)$$

A quadratic variance swap model is obtained when

$$\mathbf{v}_t = \phi + \psi^\top \mathbf{X}_t + \mathbf{X}_t^\top \pi \mathbf{X}_t$$

Quadratic Model

Term Structure of Variance Swaps

Quadratic variance swap model admits a quadratic term structure:

$$VS(t, T) = \mathbb{E}_t^{\mathbb{Q}}[QV(t, T)] = \frac{1}{T - t}G(T - t, X_t)$$

with $G(\tau, x) = \Phi(\tau) + \Psi(\tau)^{\top}x + x^{\top}\Pi(\tau)x$

and Φ , Ψ and Π satisfy a linear system of ODEs.

Model Selection

Do we need the quadratic feature?

<u>Data</u>: Daily variance swap rates, and quadratic variation from intraday futures returns

- ▶ In-sample (pre-crisis): Jan 4, 1996 to Apr 2, 2007
- Out-of-sample: Apr 3, 2007 to Jun 7, 2010

Method: Maximum Likelihood with Unscented Kalman filter

Estimation results:

- Good fit of the *bivariate* quadratic model (likelihood tests, AIC and BIC criteria, pricing errors, forecasting power)
- Somewhat better than affine model with jumps

Fitting Variance Swap Rates

Outline

Motivation

Variance Swap

Quadratic Model

Optimal Investment

Optimal Investment

Optimal Portfolio Problem

Maximize expected utility from terminal wealth V_T of a power utility investor with constant relative risk aversion (CRRA) η

$$\max_{\substack{\mathbf{n}_t, w_t, \phi_t, 0 \leq t \leq T}} \mathbb{E}^{\mathbb{P}}\left[\frac{V_T^{1-\eta}}{1-\eta}\right]$$

By dynamically and optimally investing:

- ▶ $\mathbf{n}_t = (n_{1t}, \dots, n_{nt})^\top$ relative notional exposures to each on-the-run τ_i -variance swap, $i = 1, \dots, n$
- *w_t* fraction of wealth invested in **stock index**
- ϕ_t fraction of wealth invested in **index option**
- and risk-free bond

Investing in a Variance Swap

- Variance swap issued at t^* with maturity $T^* = t^* + \tau$
- Spot value Γ_t at date t ∈ [t*, T*] of a one dollar notional long position in this variance swap:

$$\Gamma_{t} = \mathbb{E}_{t}^{\mathbb{Q}} \left[e^{-r(T^{*}-t)} \frac{1}{\tau} \left(\int_{t^{*}}^{T^{*}} v_{s} \, ds - \tau \, VS(t^{*}, T^{*}) \right) \right]$$

= $\frac{e^{-r(T^{*}-t)}}{\tau} \left(\int_{t^{*}}^{t} v_{s} \, ds + (T^{*}-t) \, VS(t, T^{*}) - \tau \, VS(t^{*}, T^{*}) \right)$

• Extends to τ -variance swaps issued at a sequence of inception dates $0 = t_0^* < t_1^* < \cdots$, with $t_{k+1}^* - t_k^* \leq \tau$. At any date $t \in [t_k^*, t_{k+1}^*)$ the investor takes a position in the respective **on-the-run** τ -variance swap with maturity $T^*(t) = t_k^* + \tau$.

Investing in an Index Option

- Assume: index price jumps by a deterministic size $\xi > -1$
- One index option needed to complete the market, with price O_t = O(S_t, X_t). The Q-dynamics of O_t

$$dO_t = r O_t dt + \left(\partial_s O_t S_t \sigma(X_t) \mathbf{R}(X_t)^\top + \nabla_x O_t^\top \Sigma(X_t)\right) dW_t + \Delta O_t \left(dN_t - \nu^{\mathbb{Q}}(X_t) dt\right)$$

Index put option in our empirical analysis

Wealth Dynamics

Resulting wealth process has Q-dynamics

$$\frac{dV_t}{V_{t-}} = \mathbf{n}_t^\top d\mathbf{\Gamma}_t + w_t \frac{dS_t}{S_{t-}} + \phi_t \frac{dO_t}{O_{t-}} + (1 - \mathbf{n}_t^\top \mathbf{\Gamma}_t - w_t - \phi_t) r dt$$
$$= r dt + \theta_t^{W\top} dW_t + \theta_t^N \xi (dN_t - \nu^{\mathbb{Q}}(X_t) dt)$$

•
$$\theta_t^W$$
 and θ_t^N are defined by $\begin{pmatrix} \theta_t^W \\ \theta_t^N \end{pmatrix} = \mathcal{G}_t \begin{pmatrix} \mathbf{n}_t \\ w_t \\ \phi_t \end{pmatrix}$ with

$$\mathcal{G}_t = \begin{pmatrix} \boldsymbol{\Sigma}(X_t)^\top & \sigma(X_t) \mathbf{R}(X_t) & \mathbf{0}_{d \times 1} \\ \mathbf{0}_{1 \times m} & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathcal{D}_t & \mathbf{0}_{m \times 1} & \frac{\nabla_{\mathbf{x}} \mathcal{O}_t}{\mathcal{O}_{t-}} \\ \mathbf{0}_{1 \times n} & 1 & \frac{\partial_{\mathbf{s}} \mathcal{O}_t S_t}{\mathcal{O}_{t-}} \\ \mathbf{0}_{1 \times n} & 1 & \frac{\Delta \mathcal{O}_t}{\xi \mathcal{O}_{t-}} \end{pmatrix}$$

and \mathcal{D}_t is the $m \times n$ matrix whose *i*th column is given by $\left(\frac{e^{-r(\mathcal{T}_i^*(t)-t)}}{\tau_i} \right) \nabla_x \mathcal{G}(\mathcal{T}_i^*(t)-t, X_t)$

Optimal Investment

Optimal Portfolio Problem

 Maximize expected utility from terminal wealth V_T of a power utility investor with constant relative risk aversion (CRRA) η

$$\max_{\mathbf{n}_t, \mathbf{w}_t, \phi_t, \mathbf{0} \leq t \leq T} \mathbb{E}^{\mathbb{P}}\left[\frac{V_T^{1-\eta}}{1-\eta}\right]$$

Pricing kernel:

$$\frac{d\pi_t}{\pi_{t-}} = -r \, dt - \Lambda(X_t)^\top dW_t^{\mathbb{P}} + \left(\frac{\nu^{\mathbb{Q}}(X_t)}{\nu^{\mathbb{P}}(X_t)} - 1\right) (dN_t - \nu^{\mathbb{P}}(X_t) dt)$$

 Assumption: The market is complete with respect to stock index, index option, and n on-the-run τ_i-variance swaps. Thus, n = m = d − 1, and the (d + 1) × (d + 1) matrix G_t is invertible dt ⊗ dQ-a.s.

Optimal Portfolio Problem: Solution via HJB

$$\begin{split} 0 &= \max_{\theta^{W}, \theta^{N}} \left\{ \frac{\partial J}{\partial t} + \frac{\partial J}{\partial v} v \left(r + \theta^{W^{\top}} \Lambda(x) - \theta^{N} \xi \nu^{\mathbb{Q}}(x) \right) + \frac{1}{2} \frac{\partial^{2} J}{\partial v^{2}} v^{2} \theta^{W^{\top}} \theta^{W} \right. \\ &+ \nabla_{x} J^{\top}(\mu(x) + \Sigma(x) \Lambda(x)) + \frac{1}{2} \sum_{i,j=1}^{m} \frac{\partial^{2} J}{\partial x_{i} \partial x_{j}} \left(\Sigma(x) \Sigma(x)^{\top} \right)_{ij} \\ &+ \theta^{W^{\top}} v \Sigma(x)^{\top} \nabla_{x} \left(\frac{\partial J}{\partial v} \right) + \left(J(t, v(1 + \theta^{N} \xi), x) - J(t, v, x) \right) \nu^{\mathbb{P}}(x) \Big\} \end{split}$$

Optimal Allocation: There exists an optimal strategy \mathbf{n}_t^* , w_t^* , ϕ_t^* recovered from:

$$\theta_t^{W*} = \frac{1}{\eta} \Lambda(X_t) + \Sigma(X_t)^\top \nabla_x h(T - t, X_t)$$
$$\theta_t^{N*} = \frac{1}{\xi} \left(\left(\frac{\nu^{\mathbb{P}}(X_t)}{\nu^{\mathbb{Q}}(X_t)} \right)^{1/\eta} - 1 \right)$$

where h is such that e^h satisfies a known PDE Optimal Investment

Optimal Investment in VS: Short-Long Strategy

- Short position in 2-year VS (earn variance risk premium), long position in 3-month VS (hedge volatility risk)
- Periodic patterns in n_t
- Based on bivariate quadratic model

Optimal Investment in Stock Index and Put Option

Positive optimal weight w_t in stock index Optimal Investment stive, *tiny* optimal weight ϕ_t in put option

Wealth Trajectory with Optimal Investment

- Smooth wealth growth with little volatility
- Suited for risk-averse investors (CRRA $\eta = 5$)
- "Proxy" portfolio (infrequently rebalanced) performs similarly to optimal portfolio (daily rebalanced)

Wealth Trajectory with Optimal Investment: Log-investor

- Larger fluctuations than S&P 500, to seek risk premia
- Suited for less risk-averse investors (CRRA $\eta = 1$)
- "Proxy" portfolio (infrequently rebalanced) performs similarly to optimal portfolio (daily rebalanced)

Conclusion

- Introduce a quadratic term structure model for variance swaps
- Analytically tractable (closed form curves, and explicit conditional moments)
- Optimal investment in variance swaps, stock index, index option, and risk-free bond
- Optimal trading strategy in quasi closed-form:
 - Main feature short-long strategy in variance swaps, i.e., "trading the spread of variance swaps"
 - Stable wealth growth, or more exposure to risk factors (to earn risk premiums), depending on the risk profile of investor